133137 - Teoria de Singularidades |
Período da turma: | 24/06/2025 a 14/07/2025
|
||||
|
|||||
Descrição: | Programa completo: germes de funções analíticas complexas, singularidades complexas, equivalência à direita, equivalência à direita e esquerda, link equivalência, V-equivalência, conjugação topológica da singularidades, fibração de Milnor, número de Milnor, invariantes topológicos da singularidade, singularidades reais e contrapartes com singularidades complexas.
Referências bibliográfica: 1) W. Burau, Kennzeichnung der Schlauchknoten, Abh. Math. Sem. Univ. Hamburg \textbf{9} (1933), 125--133. 2) A. H. Durfee, Fibered knots and algebraic singularities, Topology, 13, (1974), 47--59. 3) M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geometry, 17, (1982), 357--453. 4) G. Higman, The units of group-rings, Proc. London Math. Soc. (2), 46, (1940), 231--248. 5) H. C. King, Real analytic germs and their varieties at isolated singularities, Invent. Math. 37(1976), 193--199. 6) H. C. King, Topological type of isolated critical points, Ann. of Math. (2), 107, (1978), 385--397. 7) R. C. Kirby and L. C. Siebenmann, Normal bundles for codimension 2 locally flat imbeddings, Lecture Notes in Math., Vol. 438, Springer--Verlag, Berlin-New York, 1975, pp.~310--324. 8) R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math.Stud., No. 88, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1977. 9) Lê Dung Tràng, Topologie des singularités des hypersurfaces complexes, Astérisque, Nos. 7 et 8, Société Mathématique de France, Paris, 1973, pp. 171--182. 10) J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., No. 61, Princeton University Press, Princeton, NJ; University of Tokyo Press, Tokyo, 1968. 11) W.D.Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), 299--344. 12) B. Perron, Pseudo-isotopies et isotopies en dimension 4 dans la catégorie topologique, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 455--458. 13) O. Saeki, Topological types of complex isolated hypersurface singularities, Kodai Math. J. 12 (1989), 23--29. 14) O. Zariski, General theory of saturation and of saturated local rings. II. Saturated local rings of dimension 1, Amer. J. Math. 93 (1971), 872--964. |
||||
Carga Horária: |
8 horas |
||||
Tipo: | Obrigatória | ||||
Vagas oferecidas: | 60 | ||||
Ministrantes: |
Osamu Saeki |
![]() |
Créditos © 1999 - 2025 - Superintendência de Tecnologia da Informação/USP |